Practical Fault Injection on Deterministic
Signatures: the Case of EADSA

Niels Samwel' and Lejla Batina'

Digital Security Group, Radboud University, The Netherlands
{n.samwel,lejla}@cs.ru.nl

Abstract. After recent vulnerabilities of implementations of determin-
istic signatures e.g. EADSA have been revealed, it became evident that a
secure deployment of those will require additional countermeasures. Nev-
ertheless, this is not a simple task, as we show in this work. We demon-
strate the easiness of fault attacks on EdDSA as implemented in the
lightweight cryptographic library WolfSSL on a 32-bit micro-controller.
We achieve a success rates of almost 100% by voltage glitching and elec-
tromagnetic fault injection. Even after adding certain checks as a coun-
termeasure, the implementation remains vulnerable to fault injection. As
only a single successful fault is needed to recover the key, this kind of
implementation is an easy target for the attackers.

Keywords: ECC, EADSA, Differential Fault Attack

1 Introduction

In our daily lives the use of small embedded devices have become prevalent
due to their numerous deployments in transportation, secure payments and e-
health systems, as wearables etc. The accessibility of those devices makes them
a perfect target for a side-channel adversary who is able to collect and process
leakage signals leading to the secret/private data recovery. On top of this, the
protection against this kind of adversary is complicated due to the sparseness of
resources such as area, memory, power/energy budgets etc.

Typical services for the IoT and other embedded devices include authenti-
cation, which sometimes also needs to be performed off-line. One way to enable
strong authentication is to use digital signatures, where Elliptic Curve Cryptog-
raphy (ECC) is still leading the field for lightweight Public-key cryptosystems
(PKC). One of the best known signature algorithms is due to Schnorr [25], which
was introduced for discrete logarithm cryptosystems. Other signature schemes
have been also proposed such as the Digital Signature Algorithm (DSA) [18].
Later this scheme was extended to a scheme called ECDSA [15] that is using
elliptic curves. DSA-like signature schemes require a fresh randomly generated
ephemeral key for each signature.

The ephemeral key used in DSA-like schemes has to be truly random. Some
recent studies showed how real-world system do not always follow this recom-
mendation [13]. The requirement turns out to be a complex issue, especially for

resource constrained devices that may not have a true random number genera-
tor. Actually, if only a few bits of the ephemeral key are known the private key
can be recovered using a specific lattice-based cryptanalysis [14]. To downplay
the importance of the true randomness of the ephemeral key an alternative to
ECDSA so-called EADSA was introduced [8]. The selling point of EdADSA is that
the ephemeral key is generated deterministically and the requirement for crypto-
graphically secure randomness becomes obsolete. However, a recent side-channel
attack on EADSA has shown that the deterministic feature is not optimal in
practice with the adversary that has an access to the device and is able measure
side-channel signals[24]. Namely, the promoted feature to make EdDSA deter-
ministic complicates its secure implementation as it makes it a clinical use case
for a first order DPA attack using power or EM lekages.

In addition, fault attacks on deterministic signature schemes also appeared
recently by Ambrose et al. [2] and Romailler et al. [23]. The former outlines
theoretically several scenarios for different fault attacks on deterministic signa-
tures in contrast to the latter which describes a very special practical attack on
EdDSA that is feasible on an 8-bit platform only.

The work we present in this paper is a generic fault injection attack that
can be applied to a range of platforms and it is using different sources for fault
injection. We demonstrate the pervasiveness of it on a 32-bit micro-controller
targeting EADSA implementation within the lightweight cryptographic library
WOolfSSL. For our attack a single fault during the scalar multiplication algorithm
is required for the full key recovery. We give all the details of the setup where this
semi-invasive attack is done by applying minor changes to the supply voltage or
using electro-magnetic EM signals as the “glitching” sources.

The rest of this paper is organized as follows. First we list related previous
work and specify our contributions. In Sect. 2, we provide background informa-
tion required for the remainder of the paper. Section 3 presents an overview of
the attack and more detailed methodology on voltage fault injection and electro-
magnetic fault injection. Section 4 shows the results of our attack. In Sect. 5, we
discuss several countermeasures against this attack and fault attacks in general.
Section 6 concludes this paper.

1.1 Related Work

In 1997, the first differential fault attack on public key system RSA-CRT was
introduced by Boneh et al. [11]. The authors presented a theoretical concept
together with a possible countermeasure. Later Aumiiller et al [3] show the
feasibility of the attack by applying it in practice and presenting another coun-
termeasure.

Considering other PKC the first differential fault attack on an elliptic curve
cryptosystem was presented by Biehl et al. [10] in 2000. In the scenario they
propose the resulting point is not on the original curve anymore. Hence, as a
consequence they validate the point as a countermeasure.

Barenghi et al. [5] describe several potential fault attacks on EC-based sig-
nature schemes theoretically. In one of the attacks, a fault is introduced during

the computation of the hash function. This value is not public and must be re-
covered by brute forcing over all possible values. The authors implemented the
key recovery part and presented their results for this specific scenario.

Recently, a work by Ambrose et al. [2] outlined several differential fault at-
tacks on deterministic signature schemes. However, the authors present no prac-
tical results.

The first differential fault attack on Ed25519 was published by Romailler et
al. [23]. The authors used the Arduino nano, an 8-bit micro-controller as their
target platform where a signing operation takes over 5 seconds. They introduced
a fault in the output of a hash function which is not public so the requirement
for the attack is to brute force this value. This issue is complicated with mod-
ern platforms using 32- or 64-bit architectures. Therefore, the attack is not so
practical for other than 8-bit architectures. In our attack, we introduce a fault
during the scalar multiplication which makes it platform-independent.

With the introduction of the Rowhammer attack [17] several papers have
been published on injecting faults using software manipulations. Poddebniak et
al. [21] used the idea to attack deterministic signature schemes. In their work,
they explain how to apply the Rowhammer attack and how to prevent it by
presenting several countermeasures. This attack is very different than our attack
because the impact of Rowhammer is that an invalid signature is generated, while
our attack recovers the relevant part of the key in order to forge a signature.

1.2 Contributions
Here we summarize the main contributions of this paper:

— In this paper we present a conceptually novel and generic differential fault
attack on the deterministic signature scheme Ed25519. We inject the fault
in the scalar multiplication operation that is unrelated to the hash compu-
tation, such that the attacker does not need to brute force the intermediate
result.

— The attack is demonstrated on a real-world implementation of EA25519 from
the lightweight cryptographic library WolfSSL on a 32-bit micro-controller.
This kind of implementation particularly targets low-cost and/or resource-
constrained environments as in the IoT use cases and similar.

— We show that our attack can be effectively executed using voltage glitching
and electromagnetic fault injection.

— We also establish the fact on the necessity of suitable countermeasures as
we show that even the common point validity check countermeasure cannot
counteract the attack.

2 Background

2.1 EdDSA

EdDSA is a known digital signature scheme constructed over so-called Edwards
curves [8]. An instance of EdDSA using Edwards Curve25519 in particular (called

Ed25519) is used in Signal protocol, Tor, SSL, etc. There is also an ongoing
effort to standardize the scheme, known as RFC 8032. The signature scheme
is a variant of the Schnorr signature algorithm [25] that makes use of Twisted
Edwards Curves. Compared to ECDSA, EADSA does not need new randomness
for each signature as the ephemeral key is computed deterministically using
the message and the auxiliary key that is part of the private key. The security
depends on the secrecy of the auxiliary key and the private scalar. This does not
create an additional requirement as we need to keep a private key secret anyway.
The security of ECDSA depends heavily of a good quality randomness of the
ephemeral key, which has to be truly random for each signature. This feature
was put forward in promotion of EADSA as being more side-channel resistant
than ECDSA [8].

In Ed25519, a twisted Edwards curve birationally equivalent to Curve25519 [7]
is used. Ed25519 sets several domain parameters of EADSA such as:

— Finite field F,, where ¢ = 2255 — 19
Elliptic curve E(F,), Curve25519 [7]
Base point B

— Order of the point B, [

— Hash function H, SHA-512 [22]

Key length b = 256

For more details on other parameters of Curve25519 and the corresponding
curve equations we refer to Bernstein [7].

Table 1. Notations EdDSA

Name Symbol

Private key k

Private scalar a (first part of H(k))
Auxiliary key b (last part of H(k))

Ephemeral scalar of private key r

To sign a message, the signer has a private key k and message M. Algorithm 1
shows the steps to generate an EdDSA signature.

The first four steps belong to the key setup and are only applied the first time
a private key is used. Notation (z,...,y) denotes concatenation of the elements.
We call a the private scalar and b = (hg, h1,...,hop—1) the auxiliary key (see
Tab. 1). In Step 5 the ephemeral key is deterministically generated.

To verify a signature (R,S) on a message M with public key A a verifier
follows the procedure described in Algorithm 2.

2.2 Fault Attacks

Fault attacks are active attacks and aim at exploiting the leakage of sensitive
information due to some irregular conditions i.e. faulty computation. This is

Algorithm 1 EADSA signature generation

Key setup.

Hash k such that H(k) = (ho, h1,...,hop—1).

a = (ho,...,hy—1), interpret as integer in little-endian notation.
b= (ho,...,hap—1).

Compute public key: A = aB.

Signature generation.

Compute ephemeral key: r = H (b, M).

Compute ephemeral public key: R = rB.
Compute h = H(R, A, M) and convert to integer.
Compute: S = (r + ha) mod .

Signature pair: (R, S).

Algorithm 2 EdDSA signature verification

1: Compute h = H(R, A, M) and convert to integer.
2: Check if group equation 8SB = 8R + 8h A in E holds.
3: If group the equation holds, the signature is correct.

distinctive to side-channel attacks that observe signals while the device under
attack is working “normally”. With fault attacks, an attacker attempts to alter
environmental conditions so the device changes it behavior. One way to accom-
plish this is by “glitching” the device i.e. forcing the changes in the values of
relevant physical parameters outside the prescribed intervals. There are several
approaches to accomplish this as follows:

— Clock fault injection [1]. In this case a glitch is caused by altering the
clock signal. This is typically done with devices that allow the use of an
external clock.

— Voltage fault injection [3]. The attacker can induce this kind of glitch by
adding a short positive or negative spike in the power line.

— Electromagnetic fault injection [27]. A glitch is caused by emitting a
short electromagnetic (EM) pulse towards the device resulting in similar
effects as voltage glitching.

— Optical fault injection [26]. Optical fault injection is more invasive as the
chip typically has to be decapsulated and it often causes permanent damage
to a device.

In this paper we focus on glitches caused by voltage and electromagnetic fault
injection. If a glitch has an effect that alters the behavior of the device such that
it produces a fault, we call this “a successful fault”.

Fault Model A fault model describes the kind and the extent of faults an
attacker is able to induce while the device is operating. In this paper our target
platform is a micro-controller with a 32-bit architecture so we assume a fault
model where a glitch can create an error such that the value of a 32-bit word

is modified. This alteration can happen at different stages, for instance when
the value is processed by the CPU or when the value is on the memory bus.
Typically, a glitch could also alter instructions that affect other sensitive values
(e.g. loop counters etc.) or other behavior of the algorithm but our attacks do
not rely on this particular assumption.

Differential Fault Analysis Differential fault analysis (DFA) is a special at-
tack based on faults produced during computation. Typically, the attacker uses
the difference between the correct output and one (or more) faulty outputs to
recover secret data. This can lead to the total key recovery like in the case of
Bellcore attacks on the RSA cryptosystem [11] or merely to forging a signature.

3 Methods

3.1 General Attack Principle

In Ed25519, if an attacker is able to cause a glitch in the computation of the
ephemeral public key R = rB, or in the computation of the hash h = H(R, A, M)
where the same message is signed resulting in R’ or k', he can recover the private
scalar. Independent of which of the two values is faulty, the hash computation
is always faulty as it has R or R’ as an input. For a successful attack, we need a
correct signature and only a single faulty signature to recover the private scalar
a. With private scalar a, a valid signature on any message can be computed as
the value of r is arbitrary. From the correct and a faulty signature, the private
scalar a can be recovered as follows. The attacker obtains a correct signature
(R, S) and a faulty signature (R’,S’) with the following equations:

S =r+ ha,
S =r+ha.

If we rewrite this, we obtain the following,
S —ha=2S5 —ha.
And we can extract private scalar a

S- g
“honw (1)

a

The output of the hash function A is not public so when a fault is injected in
the computation of the hash, an attacker must know or be able to compute hash
R'. It can be brute forced as in [23] where the authors use an 8-bit architecture,
but their attack does not scale so when a more realistic target is used like a 32-
bit or 64-bit architecture, this becomes impractical. Since the ephemeral public
key R is part of the signature (hence known), we aim at causing a glitch in

the computation of the scalar multiplication R = rB. We do not target any
particular single bit (or a group of bits), but a fault in any intermediate value
of the scalar multiplication is sufficient.

For each execution of the signing algorithm there are three possible outcomes.

— Normal
— Inconclusive
— Successful

A normal outcome denotes the case when no fault occurred and the output is as
expected. A successful outcome stands for an induced fault that resulted in the
correct key by applying Eq. (1). An inconclusive outcome has several possibilities:
(i) a fault was induced and a faulty output was produced but the key could not
be recovered, (ii) a fault was induced but no output was produced, and (iii) a
fault was induced but no output was produced and the device stopped working.
At this point the device had to be power cycled to continue the experiment.

3.2 Voltage Fault Injection

We start with finding the lowest VCC (VCC_L) for which the target still behaves
“normally”. Next, we under-power the device continuously (VCC_F) so that it
still works but faults are introduced, see Table 2 for the settings. Our goal is to
maximize the success rate.

Fig. 1 shows a schematic overview of the setup. The PC handles commu-
nication with the target, collects traces from the oscilloscope and controls the
VC Glitcher. The target is powered by the VC Glitcher so it is able to inject
glitches in the power line. The glitch amplifier amplifies the current and with
the current probe we are able to measure the power consumption and see the
effects of the glitch. The oscilloscope and the current probe are only used to
collect an overview trace and determine an offset to induce the glitch. Once a
suitable offset is located, the current probe and oscilloscope are disconnected
and removed from the setup.

Once we identify this offset we try to improve the success rate and we continu-
ously under-power the device by actively inducing faults. To do this we introduce
a glitch after a trigger event occurs. We set a trigger at the start of the scalar
multiplication in the signature generation. To maximize the success rate there
are several parameters to optimize, such as:

— Glitch Voltage (GV),
Glitch Length (GL),
Glitch Offset (GO),

— Glitch Repetition (GR).

In the experiments we introduce single glitch so we fix the glitch repetition to
1. To optimize those parameters, we did not apply any sophisticated algorithm
such as e.g. [12,20], but we applied random search instead. With the first results
we manually narrowed down the search ranges to find optimal parameters.

Y

FTDI Target

o Reset line VC Glitcher

—¢ Reset

Trigger
—e Vcc

Y

Trigger
Oscilloscope Current Probe

out In- Glitch Amplifier
In+

Y

Out

Fig. 1. Voltage fault injection setup

Table 2. Settings for voltage fault injection setup.

Name Setting
VCC_L 2.3V
VCC_F 2.201V

Glitch Voltage -0.16V
Glitch Length 3070 ns
Glitch Offset 1444010 ns
Glitch Repetition 1

3.3 Electromagnetic Fault Injection

Electromagnetic fault injection (EMFT) is an active attack where the attacker
emits a short EM pulse as a glitch from a close distance. If the glitch is strong
enough, it can cause a fault. The EM pulse is emitted using a small coil. Different
coils could have different effects on the size and the polarity of the EM pulse,
but this point is not relevant for our work.

YN
PC Reset line VC Glitcher
Digital Glitch
Pulse Amplitude
Reset
Trigger
Vee
L
Trigger Y —
Oscilloscope Current Probe
out In - Glitch Amplifier
In+
In
Out

Fig. 2. EMFT setup

As with voltage fault injection, there exist several parameters to be optimized
for EMFI. Those are also different parameters and the most distinctive ones are
the and y coordinates corresponding to a location on the chip where the coil
that emits the EM pulse is positioned. Figure 2 shows an overview of the setup.
We use the XY-table to precisely position the EMFI probe on the device. With
the XY-table we are able to automate a systematic scan of the chip’s surface to
find a location with the highest success rate of the attack. Below we list all the
parameters we need to optimize.

— xz-Coordinate

— y-Coordinate

Glitch Power (GP)
Glitch Offset (GO)

— Glitch Repetition (GR)
— Glitch Length (GL)

Again we introduce a single glitch so we fix glitch repetition to 1. The parameter
glitch length is fixed to 40 ns due to the EMFI hardware that we used in the
attack.

4 Experimental Setup and Results

4.1 Setup

The setups for voltage and EM fault injection are very similar. Our target is a de-
velopment board containing a Cortex-M4F, more specifically the STM32F4071G.
For our experiments we did not have to decapsulate the chip. A signing opera-
tion of Ed25519 from WolfSSL takes roughly 30 ms on this platform. Electronic
devices have capacitors to keep the power at a stable level so internal or external
fluctuations do not influence the behavior of the device. Since we actually want
to cause some fluctuations in the power line to alter the behavior with voltage
FI, we removed most capacitors on the board. With EMFI we externally cause
the fluctuations in the power plane with short EM pulses so the attack also works
without removing the capacitors.

VC Glitcher

EM-FI
Transient Probe

Picoscope

Current Probe

Target XY-Table

Fig. 3. This figure shows the experimental setup. In the top left corner we see the EM-
FI transient probe and below that the target board which is fixed to the XY-table. In
the center with the blue screen, we see the VC Glitcher under witch is the oscilloscope
and the small block on the right is the current probe.

We use the VC Glitcher! to power the board and to cause fluctuations in the
voltage. We also need the Glitch Amplifier as the VC Glitcher does not provide
enough current to power the board.

To generate the EM pulses we use an EMFI Transient Probe that is con-
nected and controller by the VC Glitcher. An zy-table is used to move the
EMFTI Transient Probe with high accuracy.

! https://www.riscure.com/security-tools/hardware/

The oscilloscope used to visualize the effect of the voltage fluctuations or
the EM pulses is a Picoscope5203. A current probe measuring those changes is
connected in series with the power line and it is also a part of the setup. Figure
3 shows a picture of our experimental setup.

We attack the software implementation of Ed25519 in WolfSSL version 3.11.0.
Similar implementations can be found in other cryptographic libraries imple-
menting Ed25519. We added a trigger to the code right before the start of the
scalar multiplication. We could also have inserted the trigger before the signa-
ture generations starts as the code runs in constant time, so it would merely
imply the increase in the offset. The attack is also possible without adding a
trigger in the code when using hardware that can generate a trigger based on a
pattern in the signal [6].

4.2 Voltage Fault Injection Results

The first step of the experiment was to continuously under-power the device.
Without introducing glitches we were able to achieve a success rate of 44%.
When we actively tried to induce glitches using the described parameters, we
were able to increase the success rate to 69.95% using an optimal set of parameter
values we found. We computed the success rates using 10 000 measurements with
those optimal parameters.

To visualize the effects of the glitch parameters, we set the parameters to
a constant value except for two. For those two parameters we selected random
value within a certain range. Fig. 4 shows the result of the experiment. In Fig. 4a,
we vary the glitch length and the glitch voltage parameters. It shows a typical
curve of successful glitches as in [12,20]. A selected set of parameters above the
curve means the glitch is not strong enough and the device continues like nothing
happened and a selection of parameters below the curve results in a glitch that
is too strong and the device stops responding. In Fig. 4b and Fig. 4c we vary
offset with the glitch voltage and glitch length and we see a clear pattern that
corresponds to an iteration in the scalar multiplication. Each figure contains
results of 10 000 measurements.

The results show that inducing exploitable faults is not complicated as even
providing a lower voltage results in a reasonably high success rate.

4.3 Electromagnetic Fault Injection Results

In this experiment we start by scanning the surface of the chip to determine good
positions for a successful fault injection. Figure 5a shows the surface of the chip.
We divide the x and y-axis up in 100 parts each, resulting in 10000 positions to
scan. We inject a glitch 20 times on each position where the remaining parameters
are randomized similar as in the previous section. By manually optimizing the
parameters, we were able to achieve a success rate of 99.31%. We did another
surface scan with these fixed parameters, the result is shown in Fig. 5b. The
figure shows a heatmap, where the color denotes the result of a fault. A color

-0.05

-0.1

-0.15

Glitch voltage (V)
S
&

-0.35

-0.4

-0.45

-0.5 : —

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Glitch length (ns)

(a)

Glitch voltage (V)

0 02 04 06 08 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
Glitch offset (ns) %108 Glitch offset (ns) %108

(b) ()

Fig. 4. Voltage fault injection results, Normal (green), Inconclusive (yellow), Successful

(red).

that is a mix between other colors is corresponding to the situations when the
resulting faults were mixed.

To scan the surface we performed a total amount of 200000 measurements.
With the best parameters choice of paremetrs, we used 10000 measurements to
compute the success rate.

Since we induce a fault in the scalar multiplication, we expected most result-
ing points would not be on the curve anymore. In WolfSSL there is no check like
this implemented, so we added it ourselves to let the signing operation fail in

y-axis

(b) Heat map with EMFI results

Fig. 5.

case of a fault as a countermeasure. We scanned the surface again with optimal
parameters and as expected not a single fault was successful.

To have a faulty scalar multiplication where the resulting point still is on
the curve, we can modify the scalar itself. However, this is only possible while it
is used within the scalar multiplication as the original scalar » must be used to
compute S that is leading to the key recovery. In the implementation of WolfSSL

(similar in other implementations) the scalar is copied and some computations
are done to alter its representation. This takes roughly 36us and gives us plenty of
time to emit an EM pulse while the original scalar remains unaltered. Optimizing
the parameters resulted in a success rate of 70.15%. Although the success rate
with the check on the validity of the resulting point is lower, it is still high
enough for the attack to remain practical.

5 Countermeasures

There are several approaches to count fault injection attacks, both in hard-
ware [9,16] and in software [3,4]. Here we discuss some software countermea-
sures.

A countermeasure is to add redundancy in the implementation. For instance,
in a common countermeasure, the implementation could execute the scalar mul-
tiplication again and at the end compare both results. If they are not identical,
then the fault occurred and the signature should not be released. The signature
could also be verified at the end, if the signature is invalid, do not return the
signature.

However, there is a problem with adding redundancy as a countermeasure
as this introduces a check in the code that an attacker also could try to skip
by injecting a glitch. It also penalizes the performance. Although this adds a
significant amount of difficulty to the attack, an attacker only has to be successful
once to be able to recover the secret key.

Another solution is to add randomness to the scheme. In [23] the authors
propose a countermeasure called “fault infective computations” where 32 random
bytes are used together with different implementations of the hash function for
each time the hash function is used in the scheme. A second implementation of
the hash function adds to the code size and may not be preferred due to resource
constraints.

In this attack we exploit that ephemeral scalar r is equal in both signatures.
Introducing some randomness in the generation of r counters our attack. New
standards where randomness is introduced in the generation of r are proposed
like XEADSA and VXEdDSA [19]. In these schemes 64 random bytes are added,
the VXEdDSA scheme also requires several additional scalar multiplications.
In [24], the authors propose a cheap countermeasure that requires only 16 random
bytes that are used in the generation of r. The randomness does not have to be
perfect as with ECDSA as long as the bytes remain unknown to an attacker. On
top of that, the countermeasure also protects the key against differential power
analysis [24]. Signatures generated using this countermeasure are still verifiable
and conformed with the standard.

6 Conclusion

With this paper we improve and generalize previous attacks on Ed25519, using
a realistic target platform and a real-world implementation. We show that our

attack is possible using voltage FI and EM FI with very high success rates. While
we are able to achieve high success rates, close to 100%, we would like to note
that an attacker only needs a single successful fault to recover the key. With
adding redundancy to the implementation, it would remain in agreement with
the standard but still vulnerable to fault injection. To counter fault injection,
the standard should be modified to add some randomness in the generation of
the ephemeral scalar.

Although we attack the implementation of WolfSSL, the attack is extendable
to other implementations of Ed25519 as the issues are with the scheme being
implemented straightforwardly and not a particular implementation itself.

Acknowledgments

This work was supported in part by a project funded by DarkMatter LLC.

References

1. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When clocks
fail: On critical paths and clock faults. In: Lecture Notes in Computer Science,
vol. 10, pp. 182-193. Springer Berlin Heidelberg (2010)

2. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. Cryptology ePrint Archive, Report 2017/975
(2017), https://eprint.iacr.org/2017/975.pdf

3. Aumiiller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on
RSA with CRT: Concrete results and practical countermeasures. In: Cryptographic
Hardware and Embedded Systems - CHES 2002, vol. 2523, pp. 260-275. Springer
Berlin Heidelberg (2003)

4. Barenghi, A., Breveglieri, L., Koren, 1., Pelosi, G., Regazzoni, F.: Countermeasures
against fault attacks on software implemented AES. In: Proceedings of the 5th
Workshop on Embedded Systems Security - WESS 0. ACM Press (2010)

5. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes (short paper). In: Advances in Information and Computer Security. pp.
182-192. Springer, Springer International Publishing (2016)

6. Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: Design and implementation
of a waveform-matching based triggering system. In: Constructive Side-Channel
Analysis and Secure Design, pp. 184-198. Springer International Publishing (2016)

7. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: International
Workshop on Public Key Cryptography. pp. 207-228. Springer, Springer Berlin
Heidelberg (2006)

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77-89 (aug 2012)

9. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Transactions on Computers 52(4), 492-505 (apr 2003)

10. Biehl, I., Meyer, B., Mller, V.: Differential fault attacks on elliptic curve cryptosys-
tems. In: Advances in Cryptology — CRYPTO 2000, pp. 131-146. Springer Berlin
Heidelberg (2000)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Advances in Cryptology — EUROCRYPT ’97, pp.
37-51. Springer Berlin Heidelberg (1997)

Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch
it if you can: Parameter search strategies for successful fault injection. In: Smart
Card Research and Advanced Applications, pp. 236-252. Springer International
Publishing (2014)

Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P.; Rescorla, E., Shacham, H.: A systematic analysis
of the juniper dual ec incident. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 468-479. CCS ’16 (2016),
http://doi.acm.org/10.1145/2976749.2978395

Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography 23(3), 283290 (Aug 2001), https://doi.org/
10.1023/A:1011214926272

Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). International Journal of Information Security 1(1), 36-63 (aug
2001)

Karpovsky, M., Kulikowski, K., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: International Conference on Dependable Systems and Networks, 2004. IEEE
(2004)

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them. ACM SIGARCH
Computer Architecture News 42(3), 361-372 (Oct 2014)

Kravitz, D.: Digital signature algorithm (Jul 27 1993), https://www.google.com/
patents/US5231668, uS Patent 5,231,668

Perrin, T.: The XEdDSA and VXEdDSA Signature Schemes (2017), https://
signal.org/docs/specifications/xeddsa/xeddsa.pdf, (Accessed: 11-09-2017)
Picek, S., Batina, L., Jakobovic, D., Carpi, R.B.: Evolving genetic algorithms
for fault injection attacks. In: 2014 37th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE (may 2014)

Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rsler, P.: Attacking
deterministic signature schemes using fault attacks. Cryptology ePrint Archive,
Report 2017/1014 (2017), http://eprint.iacr.org/2017/1014

PUB, F.: Secure hash standard (shs). Tech. rep., NIST (jul 2015)

Romailler, Y., Pelissier, S.: Practical fault attack against the Ed25519 and Ed-
DSA signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). IEEE (sep 2017)

Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519
in WolfSSL. Cryptology ePrint Archive, Report 2017/985 (2017), http://eprint.
iacr.org/2017/985

Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161-174 (1991), http://dx.doi.org/10.1007/BF00196725

Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2002, pp. 2—-12. Springer Berlin
Heidelberg (2003)

Velegalati, R., Van Spyk, R., van Woudenberg, J.: Electro magnetic fault injection
in practice. In: International Cryptographic Module Conference (ICMC) (2013)

