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Abstract. We introduce a novel approach for designing symmetric ci-
phers to resist fault injection. The approach is fairly generic and ap-
plies to round functions of block ciphers, cryptographic permutations and
stream ciphers. We showcase our method with a new permutation called
Frit and perform fault analysis on a simulated hardware and actual soft-
ware implementation. We present performance results for software and
hardware implementations with and without the fault detection mecha-
nism. On a Cortex-M4 platform the overhead of the countermeasure in
cycles is 83%. The penalty on resources for hardware implementations
depends on the hardware and can be as low as 56%.

Keywords: design of cryptographic primitives, fault injection countermeasures,
side-channel attack, lightweight implementations

1 Introduction

Today’s world is digital and our daily business relies on the devices that we
carry on us such as bank and transportation cards, car keys, phones and other
embedded and mobile device. Many of these devices have to operate with very
low power or energy and the continuous shrinking of the cores puts challenging
constraints on area and memory.

Additionally, they are exposed to attackers that may exploit physical leak-
ages of the cryptographic computation to extract cryptographic keys and other
private data. This physical leakage can take the form of computation time, power
consumption, electromagnetic radiation or other physical emanations and their
exploitation is called side-channel analysis (SCA) [20,19]. The area of SCA has
become an active field of research with advances in attacks and countermeasures.
Another vulnerability of these devices is fault analysis, where an attacker pro-
vokes faults in the cryptographic computation and uses the resulting outputs to



recover the key. Boneh et al. showed in [8] that only a single computation fault
is sufficient to extract an RSA private key. Like SCA, fault analysis (FA) has be-
come a rich research field and designers and implementers have started working
together to come up with secure designs and implementations of cryptographic
primitives.

In the academic world, this need for low-resource cryptography with expo-
sure to SCA and FA has given rise to the subfield of lightweight cryptography.
This discipline has primarily focused on the design of small-size block ciphers
with a round function that can be implemented compactly. Examples include
PRESENT [7], KATAN and KTANTAN[13] and more recently GIFT, an up-
date of PRESENT based on more modern insights [2]. Recent proposals have
addressed tweakable block ciphers and here Skinny [5] is a prominent example.
Other avenues included low-latency block ciphers like PRINCE [9] and low-
latency tweakable block ciphers like Mantis [5] or low-energy block ciphers like
MIDORI [1]. The (tweakable) block cipher approach has the advantage that the
modes on top of the primitive for encryption, authentication and key derivation
become simpler than with simple block cipher. However, dedicated functions may
lead to more efficient solutions. For example, the MAC function Chaskey [23] is
a dedicated MAC function with a very small workload on certain low-end CPUs.
More recently, the insight that one can do efficient encryption and authentication
with the sponge and duplex construction calling a cryptographic permutation [?]
had led to the emergence of several lightweight permutations such as Gimli [6]
and Mixifer [30]. The relative large width of these permutations as compared to
lightweight block ciphers is compensated by the low overhead of the the duplex
and sponge modes, leading to a total solution taking significantly less resources
than a block cipher based solution.

The majority of lightweight designs do not take into account resistance
against SCA and/or FA. These are often considered issues that should be dealt
with in the actual implementation. However, some designs did take it into
account by using non-linear components that lend themselves to masking. In
this category we can mention Noekeon [12], the LS-Designs [16], FANTOMAS,
ZORRO and ROBIN and also the Keccak-f permutation [25].

Hence, designers have started already more than a decade ago looking into
special designs dedicated to the optimization of specific parameters (e.g. latency,
power, energy) or introducing additional features like SCA/FA countermeasures
etc. However, as far as we know, no proposals have taken into account the ability
to provide protection against fault attacks from the design phase.

Recently, there were proposals for combined countermeasures against SCA
and FA on existing ciphers, namely ParTI [28] and CAPA [27]. Although the
contributions are relevant when aiming at crypto devices secured against phys-
ical attacks, the results incur a substantial overhead in area and performance.
Providing protection against both SCA and faults is not easy in the sense that
FA countermeasures take redundant representations and computations that in-
crease total power consumption and EM leakage.
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1.1 Related Work

Several works considered improving SCA resistance from the design phase, most
notably Grosso et al. [16]. The authors study possible optimizations when spe-
cializing the designs to Boolean masking.

To our best knowledge there are only two works considering combined coun-
termeasures against SCA and FA. Schneider et al. [28] introduce a countermea-
sure for cryptographic hardware implementations that combines the concept of
threshold implementation with an error detecting approach against fault injec-
tion. The idea is demonstrated on the lightweight cipher LED and the total area
of the ParTI protected cipher is roughly 2.5 times larger than the unprotected
version. On the other hand, the work of Reparaz et al. [27] proposes a counter-
measure that claims security against higher-order SCA, multiple-shot DFA and
combined attacks but it comes at price. A chosen set of parameters implies a
protected hardware implementation of AES of 215 105 GEs. Both works have in
common that they apply their strategies to existing ciphers.

With respect to SCA resistance a cautionary note is necessary. Regazzoni
et al. [26] showed that, in the context of an AES S-box, various error detec-
tion mechanisms increase the vulnerability to power analysis attacks. In a sim-
ilar fashion, Cojocar et al. [11] highlighted the trade-off between instruction
duplication and side-channel resistance, using this time horizontal exploitation
techniques. Our work shows that this is not always the case, i.e., there exist
fault-resistant mitigations that do not diminish resistance to SCA. This fact has
also been verified in this paper.

1.2 Our Contributions

In this work we present a design approach for building round functions that
have built-in protection against fault injection attacks. Our approach is based
on a redundant representation of the state and a round function extension with
an invariant property. We identify a number of lightweight operations for non-
linearity and diffusion that are compatible with this approach. In contrast to the
approaches in [28] and [27], we start from a novel approach leading to a better
trade-off between resource usage and level of protection against cryptanalysis,
SCA and fault attacks.

To demonstrate the approach we include an example cryptographic permuta-
tion called Frit (for Fault-Resistant Iterative Transformation) that has a com-
petitive performance in both hardware and software. The approach is however
flexible and can also be used to build (tweakable) block ciphers, stream ciphers
or MAC functions.

We demonstrate the FA resistance of Frit when implemented on a 32-bit mi-
crocontroller and an ASIC platform, i.e. we show how Frit provides single-fault
resistance at a reasonable overhead. Providing security against a more potent ad-
versary with tampering capabilities [17] or with ineffective fault capabilities [14]
usually results in much higher overhead and remains outside our current scope.
We also show that the SCA resistance does not decrease as much, with the new
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approach on FA mitigations, as with duplication. This is the first step towards
adding a concrete SCA protection such as a TI scheme or some other masking
approach.

1.3 Organization of this Paper

We present our general idea in Section 2. We illustrate the validity of our ap-
proach with a concrete lightweight cryptographic permutation that we present
in Section 3. We motivate its design in Section 4, integrate the fault countermea-
sure in Section 5 and discuss its performance in Section 6. We report on fault
experiments on both a simulated hardware and an actual software implementa-
tion in Section 7. Finally, we analyze the impact of redundant computations on
DPA resistance in Section 8.

2 Building Fault-Resistant Round Functions

In this section we discuss operations that are useful in round functions and that
lend themselves to fault detection at a relatively low cost.

The round functions we consider operate on a state that is partitioned in n
equally sized limbs. For the purpose of fault detection, we extend this state with
an additional limb and compute an extended round function on this extended
state. This extended round function has two properties:

Correctness The effect of the extended round function on the first n limbs is
the same as the round function itself.

Sum-invariance Let the limb-sum of the extended state be the bitwise sum
(XOR) of the n+ 1 limbs. The extended round function preserves the limb-
sum.

So the n + 1-th limb can be seen as a simple checksum of the state as it is the
bitwise sum of its n limbs plus a constant. The value of this constant is the initial
value of the limb-sum.

In order to build a sum-invariant round function, we simply compose it from
sum-invariant steps. For the step functions, we can typically distinguish four
operations, each with its own function: non-linear operations, mixing operations,
transpositions and round key addition. For example in AES these map to the four
step functions SubBytes, MixColumns, ShiftRows and AddRoundKey. Clearly,
in the extended round function achieving sum-invariance may induce overhead
processing in each of the steps . The key idea of our approach is to choose
the specific operations to make that overhead small, hereby making use of the
following facts:

limb transposition This is a re-ordering of the native limbs. It does not impact
the limb-sum and hence has no overhead.

limb adaptation When modifying one limb by bitwise adding a function f of
the limbs, limb-sum variance just requires computing that function twice
and also adding it to the checksum limb. adding sum-invariance doubles the
computational cost.
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limb-sum switch Replacing the first limb by the bitwise sum of all limbs can
be achieved with just a transposition on the extended state and adding a
constant to two limbs. Namely, the checksum limb already contains this
bitwise sum plus a constant, so it suffices to switch the first limb and the
checksum limb and to add the initial value of the limb-sum to both. So
here the computation on the extended state is actually lighter than the
computation on the native state.

The simplest invertible non-linear function is the addition to a limb of the bitwise
AND of two other limbs. For the mixing layer, one can add to a limb two cyclically
rotated versions of the same limb. This achieves mixing between bits that are in
different positions in the limbs. Replacing the first limb by the bitwise sum of
all other limbs achieves mixing between bits of different limbs.

The protection offered by the state and round function extension is that a
fault in the computation is likely to change the limb-sum. Such a change can be
detected after any round by computing the limb-sum and comparing that with
the (stored) initial value of the limb-sum. Non-equality means there was a fault,
but equality does not necessarily mean there has been no fault. In the latter
case we speak of undetected faults. Clearly, a fault in a single limb, whatever
its Hamming weight, will affect the limb-sum. Note, furthermore, that in this
case the sum-invariance property will ensure that the limb-sum remains invalid
through the following steps. The only way the limb-sum can return to the valid
value is by another fault, that must exactly compensate for the first fault.

Our primary goal is the guaranteed detection of any single fault in the com-
putation of the datapath. For this, the computation of f in limb adaptation
steps must be done twice, rather than adding the result of the same computa-
tion to both the native limb and the checksum limb. The easiest attack with
this double computation in place would be to inject the same fault in each of
the two computations, so that they compensate each other in the limb-sum. In
this respect it is a good idea to use different registers and/or different compu-
tational sequences (in software) or different combinatorial circuits for the two
computations, so that the attacker has to induce two different faults that have
the same net effect. Alternatively, an attacker could also inject, in between op-
erations, compensating faults on two limbs that would leave the limb-sum of the
state unchanged. To be successful, such an attack would require knowledge of
the implementation details and the ability to very precisely inject faults.

However, there are other types of faults that are not covered by the counter-
measures and they must be countered with other means. For example, skipping
a full step, round or number of rounds, will not affect the limb-sum. Another
example are faults in the limb-sum checking mechanism itself, e.g., just faulting
the reporting of the comparison outcome from different to equal. Clearly, imple-
mentations must have some redundancy in the control flow logic for the handling
of the steps and the limb-sum checking.
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3 FRIT Design and Specification

In order to illustrate our design approach, we present Frit, a 384-bit crypto-
graphic permutation, whose building blocks consist in the operations introduced
in Section 2. Not only do they make Frit lightweight, but they also allow for a
cheap extension of the permutation.

Algorithm 1 Frit

Input: a, b, c ∈ {0, 1}128
Output: (e, f, g) = FRIT(a, b, c)
for i from 0 to 15 inclusive do

c← c⊕ RCi

a← a⊕ (a≪ 110)⊕ (a≪ 87)
c← c⊕ (a ∧ b)
c← c⊕ (c≪ 118)⊕ (c≪ 88)
b← a⊕ b⊕ c
(a, b, c)← (c, a, b)

end for
return (a, b, c)

Notation. Frit operates on a state of three limbs in {0, 1}128, the set of
bitstrings of length 128. We will denote by

– RCi, the i-th round constant,
– x⊕ y, the exclusive or (XOR) of limbs x and y,
– x ∧ y, the bitwise logical and of limbs x and y,
– x≪ k, the bitwise rotation to the left of limb x by factor k.

The permutation is composed of 16 identical rounds applied on a state formed
by three limbs a, b and c. Each round, represented in Fig. 1, has 6 steps: (1) the
round constant addition; (2) a first mixing step; (3) a Toffoli gate [31]; (4) a
second mixing step; (5) a switch operation; (6) a transposition.

Round Constants Similarly to what is done for Mixifer [30], a master round
constant is generated from a linear-feedback shift register. Choosing feedback
polynomial 1 + x2 + x5 and initial state 0b11111, we get the bit sequence
0b11111001101001000010101110110001 as master round constant. The round
constant for round i is then obtained by shifting the master round constant
by i bits to the right.
At the start of the i-th round, the round constant is added to limb c. In
particular, this operation can be written as Ri(a, b, c) = (a, b, c⊕ RCi).

Mixing Steps Each round contains two mixing steps Mi with i = 1, 2 de-
fined respectively by M1(a, b, c) = (a ⊕ (a ≪ 117) ⊕ (a ≪ 87), b, c) and
M2(a, b, c) = (a, b, c ⊕ (c ≪ 118) ⊕ (c ≪ 88)). Their main purpose is to
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Fig. 1. Round of the permutation

achieve fast diffusion. The value of the rotation offsets are justified in Sec-
tion 4. Note that the first mixing step can be computed in parallel to the
round constant addition, as both operations act on different limbs.

Toffoli Gate The Toffoli gate is defined by T (a, b, c) = (a, b, (a ∧ b) ⊕ c). It is
the only non-linear operation in the permutation.

Switch. The three limbs are summed together as elements of F2128 . Concretely,
the operation is given by S(a, b, c) = (a, a⊕ b⊕ c, c).

Transposition The operation is defined by τ(a, b, c) = (c, a, b).

4 Propagation Analysis

In this section we analyze the propagation properties of Frit and its resistance
to invariant attacks. Furthermore, we used this analysis to choose the rotation
offsets in the mixing steps and the round constants. We are well aware that the
propagation analysis is not enough to motivate the security of Frit. With that
in mind, we intend to provide some differential and linear cryptanalysis in a
future version of this paper. Moreover, we would like to provide some algebraic
analysis, that goes deeper than the few properties we mention in appendix A.

4.1 Avalanche Tests

A property that is very informative about the vulnerability of a cryptographic
primitive against structural distinguishers such as impossible differentials, inte-
gral cryptanalysis or truncated differentials is full diffusion. We say a crypto-
graphic permutation achieves full diffusion if for a random input, the change
of any of the input bits affects all bits of the output. If a cryptographic per-
mutation achieves full diffusion after n rounds, it is likely that it does not have
exploitable structural distinguishers covering more than 2n rounds. We gave here
a rather informal definition of full diffusion. However, inspired by what is done
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for Gimli [6], we tested our permutation against three different interpretations
of the criterion, each with a more formal definition.

Full Dependency. In this test, we replace in the round function every ex-
clusive or and bitwise logical and operation by a bitwise logical or. Then, we
evaluate the number of rounds needed to transform a state of weight 1 — that
is, with all the bits set to 0, except one bit set to 1 — into a state full of 1.
The conclusion of this test is that at most 5 rounds are required to reach full
dependency.

Avalanche Criterion. We evaluate the number of rounds required to ob-
serve the property that a single bit of the input flipped, results in half of the
output bits flipped. To do that, we use a Monte-Carlo approach. We generate
1000 random input states of 384 bits and flip for every input the bit at each
position once. We then observe that 7 rounds are needed to meet the avalanche
criterion. Detailed results of the average number of flipped bits resulting from a
flipped bit at any position in the input after 7 rounds are given in Appendix D.
Table 1 gives the average Hamming distance between output and input states
over the 384 000 experiments, as well as the associated standard deviation, in
terms of the number of rounds. While those results do not take the position of
the flipped bit into account, they are a good indication that 7 rounds are needed
to flip half the bits.

Round Expected Hamming distance Deviation

1 53 49.56

2 101.87 79.87

3 124.65 65.12

4 159.67 36.51

5 185.96 15.88

6 191.59 10

7 192.08 9.72

8 192.06 9.84

9 191.9 9.8
Table 1. Expected Hamming distance between output and input states

Strict Avalanche Criterion. The avalanche criterion describes how a flipped
bit affects the entire output of the permutation. However, it does not say any-
thing about how each individual bit of the output is affected by such a change.
Therefore we also considered a stronger test, that consists in evaluating the prob-
ability pij of observing a flipped bit at position j if bit i is flipped. The strict
avalanche criterion is then satisfied if those probabilities are close to 0.5 for all
possible positions. Concretely, we generated 100 000 random input states of 384
bits and flipped the bit at each position once. Again, we observed that only 7
rounds are needed to have all the pij comprised between 0.49 and 0.51.
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Those tests helped us establish the structure of the permutation as well as
fix the rotation offsets and choose the number of rounds. In fact, the rotation
offsets of Frit were chosen to achieve diffusion and the avalanche effects in the
smallest number of rounds. Note that other tuples of offsets satisfy the tests in
the same amount of rounds. Since full diffusion is achieved in 7 rounds, we fixed
the number of rounds for Frit as two times this amount plus a small margin,
i.e. 16 rounds.

4.2 Invariants Analysis

As rotation offsets influence the propagation properties of the permutation, so do
the round constants influence its invariance properties. Indeed, round constants,
if properly chosen, break the symmetries of the permutation and can defeat slide
attacks, invariant subspace attacks and non-linear invariant attacks [4]. Let D be
the set of differences of the round constants RCi ⊕RCj and let L be the linear
layer of Frit, i.e. the round of the permutation without the round constant
addition and the Toffoli gate. Then, we can verify that the smallest L-invariant
subspace of F2384 that contains D is of maximal dimension. In particular, [4,
Prop. 2] implies that Frit is resistant to invariant attacks.

5 Integration of Fault Detection

This section describes concretely how the fault countermeasures introduced in
Section 2 are integrated to Frit. In order to extend the state of the permutation,
a fourth 128-bit limb d is added. This limb is initialized to a⊕ b⊕ c, so that the
limb-sum of the initial state equals zero. The round function is then extended on
{0, 1}512 by extending each of its steps. Let P be one of the previously defined
steps, its extension P̄ (a, b, c, d) = (a′, b′, c′, d′) is chosen such that

(a′, b′, c′) = P (a, b, c), (1)

a′ ⊕ b′ ⊕ c′ ⊕ d′ = a⊕ b⊕ c⊕ d, (2)

where conditions 1 and 2 stand respectively for correctness and sum-invariance.
The round constant addition, mixing steps and Toffoli gate operation are

extended using the limb adaptation technique. As illustrated in Fig. 2 and 3 for
the first mixing step and the Toffoli gate, it consists in computing the operation
a second time on the redundant limb for a computational overhead of a factor
two. The extended operations are given respectively by:

– R̄i(a, b, c, d) = (a, b, c⊕ RCi, d⊕ RCi),
– M̄1(a, b, c, d) = (a⊕ (a≪ 110)⊕ (a≪ 87), b, c, d⊕ (a≪ 110)⊕ (a≪ 87)),
– M̄2(a, b, c, d) = (a, b, c⊕ (c≪ 118)⊕ (c≪ 88), d⊕ (c≪ 118)⊕ (c≪ 88)),
– T̄ (a, b, c, d) = (a, b, (a ∧ b)⊕ c, (a ∧ b)⊕ d).

The switch and transposition operations are extended using respectively the
limb-sum switch and limb transposition techniques for no computational over-
head. The extended operations are given by:
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Fig. 2. Extended mixing step Fig. 3. Extended Toffoli gate

– S̄(a, b, c, d) = (a, b, d, c),
– τ̄(a, b, c, d) = (c, a, b, d).

Fig. 4 represents a round of Frit integrating the redundant representation.
Checking for faults can be done after any step of the round function and

consists in verifying whether the limb-sum of the state equals its initial value.
While checking after each step or after each round would make it possible to
detect faults occurring respectively during different steps or rounds, it would also
result in a big performance penalty. Furthermore, such frequent checks would
still be unable to detect compensating faults within the same step of the round
function. Therefore, we recommend a single check at the end of the permutation.
That means that, in the entire permutation, only a single fault — i.e. a fault in
only a single word — is certain to be caught. Multiple random faults are likely
to be caught, but the countermeasure would be ineffective against an adversary
able to inject multiple faults with high precision.

5.1 Cost Analysis and Scalability

The countermeasure introduced in Section 2 detects single faults in the com-
putation of Frit. We emphasize that it uses the parity code [4,3,1] over F2128 .
Other linear codes could detect more fault injections at the cost of increasing
the code’s minimal distance. For unprotected permutations with more limbs than
Frit, codes of higher dimension would be required.

The computational overhead of a [n, k, d] code used on an unprotected im-
plementation is given by a factor (n−k)+1, in the case of a systematic code. We
can see that this estimation is tight for the limb adaptation, but too pessimistic
for the limb transposition and the limb-sum switch. The limb-sum switch is par-
ticularly adapted to our [4,3,1] code, but if we have different operations other
codes may be more efficient.

In Table 2 we give figures for the full Frit overhead of the countermeasure
in terms of the number of bitwise operations on 128-bit limbs and compare
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Fig. 4. Extended round of Frit

with duplication that should have similar specification. The duplication code is
a [2n, n, 1] code. While it has the same detection capability as our [n + 1, n, 1]
parity code, it also requires a state that is almost twice as big and its overhead
of a factor 2 is tight for all operations. Additionally, we observe that the number
of 32-bit registers required to store the entire state only increases by 25% with
our countermeasure against 100% for duplication.

Countermeasure Bitwise Operations Number of
XOR Rotation AND 32-Bit Registers

None 128† 64 16 12

This work 194‡ 128 32 16

Duplication 256 128 32 24
Table 2. Cost of the countermeasures

† The addition of the 32-bit round constant is here considered as a full 128-bit XOR.
‡ Here we add to the twelve XOR per round the two needed to initialize limb d.
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6 Implementation Results

6.1 Hardware

Frit is specified in terms of bitwise AND and XOR operations and can thus be
implemented straightforwardly in hardware. We construct a simple round-based
architecture and variant with combinatorial logic that implements a number of
rounds dividing the total number with 16. Each round is first implemented with
the countermeasure shown in Figure 4 and then without the countermeasure
as in Figure 1. For each round architecture, with and without countermeasure,
we differentiate among 5 cases: 1, 2, 4, 8 and 16 rounds. We call the latter the
full-round version. All these 10 versions are wrapped into a similar high-level
architecture depicted in Figure 5 that takes care of the input, the output, ini-
tialization of register d and the final check of the limb-sum for fault detection.
The architecture stores the state in an input/output shift register. This allows
serialization of external communication through an 8 bit bus, while internally
load and store operations can be done on the full state in parallel. The initial-
ization of register d is performed with a bitwise XOR operation on the initial
state values of registers a, b and c and the final limb-sum check at the end of
the sixteenth round that compares the XOR of the four limbs with 0.

Fig. 5. High level architecture. For the 16 rounds version, the registers d and round
constant are removed and their inputs are fed directly. Also, in the version without
countermeasure, the register d and the check are also not present.

The full-round version was optimized according to the architecture in Fig-
ure 5. In particular, there is no need for feeding back the output of the round
logic to its input and the round constants can be hard-coded in the logic. In the
version with countermeasure, no dedicated register is needed for limb d.

Table 3 shows the implementation results for the different options after
place and route, on Xilinx Vivado 2017.4.1. The FPGA chosen is the Kintex-7
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xc7k160tfbg676, a model that belongs to the SAKURA-X board. [29]. All results
were obtained with the default tool settings.

The results in Table 3 show that Frit is a competitive permutation with and
without the countermeasure when compared with Gimli, 12 rounds of Keccak-
f[400], and the software-oriented permutations Salsa20/20 and Chacha20/20.
Comparing the results with and without the countermeasure yields a difference
of 56% in case for the 1 round per cycle version, aka Frit(C)–1, when taking the
slices into account. However, this difference increases to 164% for the 16 rounds
per cycle version, aka Frit(C)–16. Minimizing the optimizer — represented in
the table by the entry Frit(C)–16 (No opt.) — reduces this difference to 141%.
From this, we conclude that the increase in the overhead is not exclusively related
to the optimizer, but also to the routing of the tool and the countermeasure cost.

Table 3 shows some unexpected result, as Frit(N)–4 appears to be cheaper
than Frit(N)–2. One possible explanation for this phenomenon is that the tool
optimizer was able to take advantage of some structure present in this version
to make a very small circuit.

Permutation State Cycles Resources Period Time Res.×Time/
size (ns) (ns) State

Gimli 384 1 2248 S(8687 L+401 F) 21.909 22 128.3

Keccak-f[400] 12r 400 1 2993 S(11491 L+417 F) 31.971 32 239.2

Salsa20/20 512 1 4128 S(16141 L+521 F) 210.266 211 1695.3

Chacha20/20 512 1 3346 S(13137 L+521 F) 152.720 153 998.0

Frit(C)–16 384 1 2500 S(9289 L+402 F) 29.923 30 194.8

Frit(N)–16 384 1 947 S(3514 L+401 F) 30.579 31 75.4

Frit(C)–8 384 2 1267 S(4838 L+544 F) 16.844 34 111.2

Frit(N)–8 384 2 566 S(2110 L+414 F) 15.198 31 44.8

Frit(C)–4 384 4 705 S(2672 L+558 F) 9.182 37 67.4

Frit(N)–4 384 4 372 S(1348 L+429 F) 7.247 29 28.1

Frit(C)–2 384 8 608 S(2326 L+555 F) 4.837 39 61.3

Frit(N)–2 384 8 441 S(1626 L+425 F) 4.056 33 37.3

Frit(C)–1 384 16 341 S(1239 L+556 F) 3.955 64 56.2

Frit(N)–1 384 16 218 S(773 L+426 F) 2.146 35 39.4

Frit(C)–16 (No opt.) 384 1 2239 S(8472 L+392 F) 31.487 31 183.6

Frit(N)–16 (No opt.) 384 1 930 S(3450 L+391 F) 31.296 31 75.8

Table 3. Results on FPGA Kintex 7 xc7k160tfbg676-1 for Frit permutation with
countermeasure (C) and without (N) and others. Slice(S). LUT(L). Flip-Flop(F)

6.2 Software

We now describe an implementation of Frit optimized for speed on an em-
bedded ARM Cortex-M4 microcontroller, with and without the fault detecting
countermeasure.
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We opted for a bitsliced representation of the state of the permutation. More
precisely, every 128-bit limb x is represented as four 32-bit words x0, x1, x2 and
x3, such that the word xi contains the bits of x with indices equal to i modulo
4. This representation offers two main advantages. First, in the implementation
without countermeasure, it makes it possible to fit the entire round computation
in the 14 registers of the Cortex M4 that are free to use, i.e. registers r0 to r12
and r14. Indeed, 12 registers are required to store the 384-bit state of Frit with
2 additional registers left for temporary values. This means that intermediate
results do not need to be stored and loaded from memory. This is however not
the case when the state is extended with an additional limb. Second, the bitsliced
representation allows for an efficient implementation of each mixing step at the
cost of 8 XOR and 8 circular shift of registers. The use of the barrel shifter, a
feature of the Cortex M4, reduces this cost further to only 8 XOR. The only
downside of the bisliced representation is that it requires four additions of 8-bit
round constants per round instead of the addition of a single 32-bit constant.
However, this penalty is somewhat mitigated by the fact that, contrarily to 32-
bit constants, the M4 is able to manipulate 8-bit constants without having to
load them from memory.

Additionally, to save a few function calls, we unrolled the entire 16 rounds of
the permutation. Our implementation of Frit takes then 1468 cycles without
fault-resistance and 2682 with it, resulting in an overhead of about 83% for our
countermeasure. This is considerably less than the 100% overhead we would have
by using duplication. Thus, considering fault-resistance early on in the design
phase of the cipher can improve performance, compared to a direct application
of software countermeasures to e.g. AES [3].

7 Fault-Resistance Evaluation

In this section we present the practical evaluation of fault-resistance of Frit.
We firstly discuss the robustness of a simulated hardware implementation that
we evaluated with a logical simulator. We then discuss the robustness of the
software implementation that we evaluated on a real device.

In our experiments, we identified four different reactions of the implementa-
tion to the fault injection:

– Normal: the fault attempt does not affect the correctness of the results.
This is mainly the case when the glitch is too short and thus incapable of
producing the effects wanted by the attacker.

– Reset: the fault is so disruptive that the device or simulation stops function-
ing. This is for instance the case when the fault hits the control unit.

– Success: the fault results in an incorrect result and is not detected. This type
of fault happens, for instance, when the adversary hits exactly the same bits
of two limbs.

– Detected: the fault is injected and detected. Most of the random faults (being
single or multiple bits) belong to this category.
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7.1 Attacking the Simulated Hardware Implementation

Figure 6 shows the flow we used to evaluate the fault-resistance of hardware
implementation. The first step of the flow is the functional test of the design
that we carried out using the logic simulator (in our case Modelsim 10.4d) and
dedicated test benches. The functional verification is carried out using the test
vectors reported in Appendix C. The evaluation of fault attack resistance can
be carried out at different stages of the design flow, in the figure we report only
the ones we used in this paper. The first stage is at the RTL level. At this stage,
no information about timing delays or actual gates is available yet. However, an
evaluation carried out at RTL level allows to confirm that the countermeasure
behaves correctly, namely it is really capable of detecting an injected fault when
it is supposed to. Furthermore, the analysis at RTL level is independent from
the target platform where the design will be implemented (thus the behavioral
analysis mimics both the behavior of ASIC or FPGAs). However, it does not give
indications about the real feasibility of the attack or about the physical circuit
that needs to be attacked. The second stage is after synthesis. In the figure we
report the ASIC synthesis that we performed using the tools and the library
discussed in Section 6. After synthesis, we know the exact gates composing the
circuit and we have precise information about the delay of the gates. However,
the results obtained at this stage are specific to the implementation and could
be invalid when different technological libraries are used.

Crypto Core HDL

RTL
 validation

CMOS Library
front-end view

synthesis
(Synopsys)

0101001.

1100001.

1100001.

0101001.

evaluation
(Matlab)

success vs detected

Test Bench

Fault Injection
Script

RTL  simulaiton
(Modelsim)

Fault Injection
Script

Gate level sim.
(Modelsim)

0101001.

1100001.

1100001.

0101001.

evaluation
(Matlab)

success vs detected

Fig. 6. Design and simulation flow for simulating fault injection in hardware

The fault injection is simulated by forcing a signal (or a set of signals) to a
specific value, for a certain amount of time (up to the whole simulation time).
With this approach, we can simulate glitches with a minimum granularity of one
bit and a glitch minimal length equal to the time resolution of the simulation
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tool. We evaluate the resistance of our designs injecting 100 000 faults, randomly
inserted during the computation of the algorithm. The type of faults we injected
included single-bit glitches (minimum length 8ns), single bit stuck-at, multiple
bit glitch and stuck-at (up to 8 bits) on the same word, and multiple-bit glitch
and stuck-at on different signals of the design (also in this case, we corrupted
up to 8 bits). The same analysis was carried out at RTL level and on the netlist
obtained after the synthesis. In both cases the designs were simulated with a
clock period of 16ns.

The results of the simulation confirmed that the behavior of Frit is as ex-
pected, both at RTL level and after synthesis. An example of a Success fault and
a Detect faults are reported in Figure 7 and Figure 8 respectively. The figures re-
port the screen capture of the Modelsim simulation where the fault is injected. In
the first case we can see the faulty signals (temp c(7)(119) and temp d(7)(119))
and the faulty detection signal (test fault detected) is low, showing that in this
case, the fault is injected but not correctly detected. In the second case, we can
see the faulty signal (temp c(7)(119)) and the faulty detection signal is high,
showing that the fault is detected correctly.

Fig. 7. Fault injection not detected.

Fig. 8. Fault injection detected.

7.2 Attacking a Software Implementation

In this section we report on our fault injection experiments on a software im-
plementation of the permutation. We apply a technique called electro-magnetic
fault injection(EM-FI) to inject glitches. This is accomplished by emitting a
short EM pulse from a specific location close to the target. Because this location
is variable, it is possible to obtain very localized results.
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Figure 9 shows a schematic overview of the setup. Our target is a development
board containing a Cortex-M4F, more specifically the STM32F407IG. The PC is
connected to the target with a serial connection to enable communication. The
tools such as the VC Glitcher and the xy-table that we use are manufactured by
Riscure6.

PCPC

Oscilloscope

FTDI

Trigger

VC Glitcher

Vcc

Trigger

Reset

Reset line

Glitch Amplifier

In
Out

Current Probe

In +
In -Out

XYZ-Table

Target

Pulse Amplitude

Digital Glitch

Fig. 9. This figure shows a schematic overview of all the components in the fault
injection setup.

The xy-table moves a probe across the target with high precision. The VC
Glitcher sends a signal so the probe will emit a pulse. The VC Glitcher also
controls a reset line, in case the pulse was too strong and the board is unable
to respond. An oscilloscope is used together with a current probe to measure
the power consumption to determine a time window where the fault should be
injected. Once this is found the oscilloscope and current probe are removed from
the setup.

The PC is also connected to the oscilloscope to collect the measurements, as
well as to the xy-table to position the probe and to the VC Glitcher to control
the pulse strength and the timing. Figure 10 shows a photo of the setup with all
the components described before.

Using the setup described earlier, we conducted an electro-magnetic fault
injection experiment where we scanned the whole surface of a chip computing
the last round of Frit. We divided the surface of the chip in a 100 by 100 grid
and injected 10 glitches per position. This resulted in a total of 100 000 glitches.
Table 4 shows the fault detection probability of the experiment. A glitch injected
by this setup should result in at most a single fault. Out of the 100 000 glitches,

6 https://www.riscure.com/security-tools/hardware/
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Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher
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Fig. 10. A photo of the setup.

Table 4. Results for fault detection probability using 100 000 glitches.

Result Percentage

Normal 62.46

Reset 30.45

Success 0.63

Detected 6.46

62.46% resulted in normal behavior, no fault occurred. The percentage is high
because a large surface area of the chip remains unaffected by the glitches. In
30.45% of the glitches the glitch was too strong and the device stopped working
and had to be reset to continue. A glitch that results in a fault requires glitch
parameters that are on the border of normal and reset behavior, this is why
many glitches resulted in a reset.

The table shows a small percentage of successful faults, i.e. faults producing
an output that passes the check, but differs from the expected one. Eliminating
duplicates within the successful faults reduced their number from 629 to 21. We
then analyzed these undetected faults heuristically by inverting the permutation
to study the intermediate states leading to the faulty outputs. Using this, we es-
tablished that they were not applicable to the fault model of our countermeasure,
since out of the 21 different successful faults:

– 9 occurred during the checking phase,
– 5 modified the round constant when being loaded from memory,
– 4 swapped two limbs during the round,
– 1 zeroed out the entire state,
– 1 skipped the round function.

The remaining 6.46% of the glitches resulted in a fault and were detected. This
means that over 90% of the glitches that resulted in a fault were detected by the
scheme.
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Figure 11a shows the target board. In Fig. 11b we see the results of the
experiment in a heat map corresponding to the dimensions of the board, where
each data point represents the average result of 10 glitches. The amount of
successful faults that were found inapplicable is not sufficient to be visible in the
figure.

x-axis

y-
ax
is

(a) Target Board (b) Heat map of the results of the following
faults, Normal (green), Reset (yellow), Detected
(blue).

Fig. 11.

8 SCA Evaluation

To offer a holistic security analysis of Frit, it is necessary to assess its security
with respect to side-channel analysis in a concrete manner. From the viewpoint
of a side-channel adversary, any form of repetitions or redundancy increases the
exploitable information. Thus in the case of our fault-detecting permutation,
the redundant 128-bit limb can enhance the available leakage and make key
recovery easier. Regazzoni et al. [26] were among the first to analyze the interac-
tion between fault injection countermeasures and side-channel attacks, focusing
on parity-based error detection for AES. Using a similar approach Cojocar et
al. [11] investigated the effect of instruction duplication and infective counter-
measures on the side-channel leakage. Notably, both works stress that standard
side-channel attacks such as univariate correlation power analysis are often in-
capable of exploiting all the available leakage when redundancy is present. Since
such naive attacks are not able to reveal the full picture, they may lure the
evaluator into a false sense of security, a fact that exacerbates the need for
more concrete evaluation tools. In this direction, Veyrat-Charvillon et al. [32],
as well as Le Bouder et al. [22], employed Soft Analytical Side-Channel Attacks
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(SASCA), a new type of side-channel attack based on the Belief Propagation
(BP) algorithm, in order to attack AES effectively. This particular attack has
the advantage of horizontality, i.e. it is able to exploit the entire structure of a
cipher/permutation and it can naturally integrate the added redundancy into
the side-channel evaluation.

Concretely, the attacker builds a bipartite graph modeling the cryptographic
algorithm. One set of nodes represents all the intermediate variables that are
manipulated in the algorithm. The other consists of function nodes that are
either leakage measurements of the intermediate variables or relations between
variables. A relation between some variables x, y and z is simply a constraint
that they satisfy, e.g. x⊕ y = z. The BP algorithm updates the initial belief on
the value of each intermediate variable (derived from the leakage measurement)
by using the information it possesses on the value of the other variables in
conjunction with the relations between them [21].

8.1 SASCA Evaluation

We perform a SASCA-based evaluation of the Frit structure, using Belief Prop-
agation in order to achieve the two following goals. First, we employ BP in order
to concretely assess the effect of redundancy to the side-channel leakage of Frit.
Second, with the aid of BP, we enable a direct comparison between the fault-
detecting Frit permutation and the common fault injection (FI) countermeasure
of duplication. Analytically, we run the BP algorithm twice, using two graphs.
The first BP graph accounts for all the intermediate variables manipulated in
the first round of the permutation, excluding the fault detection countermeasure.
The second BP graph accounts for the same intermediate values, including the
fault detection countermeasure, i.e. it integrates the permutation’s redundancy
into the SASCA attack. We simulate the leakage measurements of each 4-bit
intermediate variable v using a Normal distribution N (v, σ2), where the mean
is the identity leakage function of the variable and the standard deviation σ is
the same for all variables (homoscedastic assumption). The goal of the attack is
to retrieve the value of the 4 least significant bits of the initial value of limb b.

Figure 12 showcases the average success rate of the different simulated at-
tacks over 1000 experiments for σ = 1 as a function of the number of traces
used for the attacks. Analyzing how fast the different success rates converge to
1, we can derive three core observations. First, we conclude from the plot that
every version of BP exploits more information than a simple template attack and
thus it is a potent tool for horizontal exploitation. We stress again the necessity
for horizontal exploitation tools such as SASCA, due to the limited effective-
ness of standard statistical templates that may result in misleading conclusions.
Second we see that BP with redundancy (i.e. BP using the factor graph that in-
cludes redundancy) converges faster than BP without redundancy (i.e. BP using
the factor graph that excludes redundancy). Thus we are able to observe and
quantify the extra leakage penalty that is incurred by the added redundancy of
the fault-detecting structure. Third, we perform a comparison between the Frit
structure that uses the custom fault-detecting limb and the same Frit structure
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that uses the common duplication countermeasure against FI. Note that from
the point of view of a fault-injecting adversary, the countermeasures provide the
same level of protection against single faults. We see that the BP attack on the
Frit structure with the extended state xconverges slower compared to the BP
attack on Frit with duplication. This shows that, the redundancy introduced
by the fault-detecting structure of Frit leaks less compared to the traditional
FI countermeasure of duplication applied on the same structure. When consid-
ering SCA and FI jointly, the fault-detecting Frit structure is improving the
state of the art. With respect to fault-resistance, we have developed a counter-
measure that is equivalent to duplication, however it reveals less with respect to
side-channel information.
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Fig. 12. Success rate of the simulated attacks

9 Conclusions and Future Work

In this paper we introduced a fault analysis countermeasure that is built-in from
the design phase. The approach is based on redundancy but rather distinct from
previous FA mitigations. It allows for a compact implementation in hardware i.e.
on an FPGA and the performance penalties are moderate. For a software im-
plementation on a Cortex-M4 we get an overhead of about 83% on performance
that is considerably better than duplication methods and comes with verified
FA resistance.

It should be noted that our implementations could be further optimized using
e.g. specific features of certain platforms and this we plan to do as future work.
This contribution introduced the novel fault-resistance approach and current
numbers should be considered as a proof of concept.
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A Algebraic Properties

The round function is a degree 2 function. Moreover only 2 of the 3 branches
share the same quadratic terms (a’ and c’), while b’ is of degree 1. If we want to
estimate the degree of the permutation we can remark the following properties:

degree(a′) ≤ max(degree(c), degree(a) + degree(b)) (3)

degree(c′) ≤ max(degree(a′), degree(b), degree(c)) (4)

degree(b′) = degree(a) (5)

Equation 5 comes from the fact the only operation we apply on branch a is
linear. The Equation 3 comes from the Toffoli gate, the second linear operation
does not influence the degree. The Equation 4 comes from the XOR addition.

By starting with degree 1 we can upper bound the degree of each branch after
one round. We define the relation of bound from the beginning of the round and
the end of the round

bound degree(a′) = bound degree(a) + bound degree(b) (6)

bound degree(c′) = bound degree(a) + bound degree(b) (7)

bound degree(b′) = bound degree(a) (8)

It is clear that the degree of a’ and c’ follow the Fibonacci sequence (starting
1,2), while b’ follows the Fibonacci sequence (starting 1,1). Hence to reach the
maximal degree of a permutation of 382 bits we need at least 13 rounds (14
rounds such that all 3 branches reach maximal degree).
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B Applying TI sharing to extended Frit

To achieve better resistance against differential power analysis (DPA) of the ex-
tended round function, one can apply a masked compiler solution as the one of
Ishai, Sahai and Wagner [18]. In principle this method can provide protection
against attacks of any given order, but comes at a considerable cost as it re-
quires large amounts of randomness. Another method to protect against DPA
is threshold implementation (TI) as described in [24]. It has the advantage that
it can offer protection against first-order DPA, even in the presence of glitches,
without the need for fresh randomness during the computation.

The non-linear steps of the round function have algebraic degree 2, so we can
have a correct and non-complete TI with just 3 shares. We will share each of the
3 limbs (a, b, c) of the state in 3 shares:

a = a1 ⊕ a2 ⊕ a3
b = b1 ⊕ b2 ⊕ b3
c = c1 ⊕ c2 ⊕ c3 .

A TI implementation of a function is provably secure against first order DPA if
the sharing of its input is uniform and it each computation does not use all shares.
For the Frit round function this means that (a1, a2, b1, b2, c1, c2) must has a
uniform distribution and the above equations are satisfied. For multiple iterations
of the round function, the input to each round function must be uniformly shared
and hence the TI sharing must preserve uniformity: one says it is uniform. In
TI sharings of invertible mappings, uniformity is equivalent to invertibility. In
other words, knowing all the shares of the function’s output, one must be able
to compute all the shares of the function’s input. Uniformity is achieved by
all invertible linear mappings λ that are implemented by applying the linear
mapping to the shares independently. This is the case of all step mappings of
the Frit round function, except the Toffoli gate. The Toffoli gate XORs a bit-
wise AND of two limbs to a third limb and finding a correct and non-complete
sharing is trivial. It is easy to see that this is invertible as it leaves the the shares
of the two limbs that enter the non-linear part of the computation unchanged
and hence uniformity is achieved. The fact that the limbs of the extended state
sum to a fixed value does not impact this as the security of TI does not rely on
the (native) input to the function to have particular distributions. As a matter
of fact, in general the function input can be chosen by the attacker.

As for the sharing of the extended Frit state, we will impose that for each
of the shares it satisfies di = ai ⊕ bi ⊕ ci (assuming now for simplicity the limbs
sum to 0). So after we obtained the shared input, we will compute for each of the
three shares the fourth limb di. This copies the limb-sum redundancy to each of
the shares individually. In comparison to the solution where we would share d
uniformly as (d1, d2, d3) with d = d1 ⊕ d2 ⊕ d3 this avoids the vulnerability that
inducing the same fault in two share computations would go undetected. This
implies that (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3) is NOT a uniform sharing of
(a, b, c, d) and it is not immediate that the extended textscFrit round function
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is provably secure against first order DPA. However, we see that all Frit step
functions operate on at most 3 of the 4 limbs and the sharing of any subset of 3
or less of the 4 limbs is uniform.

So if we start from a uniform sharing (a1, a2, a3, b1, b2, b3, c1, c2, c3) of (a, b, c),
then it will remain uniform during the computation. We can use this fact to
re-use randomness across arbitrary sequences of Frit computations. When we
compute a TI version of the extended Frit permutation, we require the func-
tion’s (native) input (a, b, c) in three random shares that sum to the input. This
can be achieved to have a random sharing of (0, 0, 0) and XOR (a, b, c) to one
of the three shares. For the random sharing of (0, 0, 0) we need two independent
random shares and compute the third random share as their XOR. However,
after a Frit computation we have the output in the form of 3 random shares
summing to the output. Two of these 3 shares are random and independent.
So after extracting the native input, we can reset this to a uniform sharing of
(0, 0, 0) by replacing the third share with the XOR of the first two. In other
words, for each computation of the extended TI Frit circuit, we can re-use the
randomness available from the previous computation.

C Test Vectors

Here are four randomly generated test vectors for Frit.

Input:
a = 0x1cf0dd8ede506b28393588a176eb82d4
b = 0xcb11d0a03097a7210a9b4f84b9af8913
c = 0x592b472995a14cd0470447b2de0a30f5
Output:
a = 0xf3f93433568ec4fe6f2d138b1cbba4c9
b = 0xfe9ea4ce979c37a487b2a8ad5e4213b6
c = 0x412bd851dc9e6621ea351a9c68f18122

Input:
a = 0xb8c5eb5d50a86ea73456ea9e3517f87a
b = 0xfc41956c73bcca8ffee303747368d630
c = 0x84ec6294709145c3df7d63430f4f98bb
Output:
a = 0x2c35190f5ebebd3503120ce4f2d325dd
b = 0x9b1f4bb17b2d708f712607208206de06
c = 0x67c016b6168544103648d3ad6e58c93e

Input:
a = 0x3acd538b0ca21867dacdb35a1f6fd142
b = 0x2082de875639e4228cfcbbe0c8eb7f33
c = 0xdc917d362a8b74b839703a7de1f4e683
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Output:
a = 0xd6535b544f85e3787553f07731068da3
b = 0xfb8e049031660b8a192ebaaf5e7cf714
c = 0x1836e5e6bb4bf01b48dcb928ab9adc8f

Input:
a = 0x1342da680e728e3b93b1d03f514494dc
b = 0xab8935a2b1f684befb6d4ab8b10bf2e6
c = 0xfa6ac8b51c5e38f908c27a71dfb0f8dd
Output:
a = 0x9bb8d7b7db658c9b98a5be7c5d256d26
b = 0x307146b9767d91fd8c950a9b3bedd965
c = 0x81d55308f59bd08d8b3983406f8f93cb

D Avalanche Criterion

The following tables illustrate the average number µ of flipped bits after 7 rounds
of the permutation when the bit at position index of the input is flipped. Those
results are collected from 1000 independent inputs and the associated standard
deviation σ is added in the tables.
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index µ σ index µ σ index µ σ index µ σ

000 192.2 9.8 032 192.3 9.6 064 192.1 9.7 096 192.3 9.6
001 191.7 10.0 033 191.8 9.5 065 191.7 9.5 097 192.2 9.6
002 191.7 10.1 034 192.2 9.5 066 191.8 9.8 098 192.6 10.0
003 192.0 9.5 035 191.8 9.7 067 192.2 10.0 099 192.1 9.5
004 191.8 9.9 036 192.0 9.9 068 191.8 9.9 100 192.2 9.9
005 192.1 10.0 037 192.3 10.0 069 192.1 10.4 101 192.4 9.5
006 192.0 9.9 038 191.9 9.6 070 191.8 9.6 102 192.1 9.7
007 191.7 9.8 039 192.0 9.7 071 191.8 9.9 103 191.6 9.7
008 191.8 9.8 040 191.7 9.8 072 192.0 10.0 104 192.1 9.9
009 192.1 9.8 041 192.2 9.8 073 191.4 9.6 105 192.1 9.4
010 191.8 9.9 042 192.1 10.2 074 192.0 9.6 106 192.1 10.2
011 192.4 9.7 043 191.8 9.9 075 191.2 9.9 107 191.2 10.0
012 191.8 9.6 044 192.2 9.5 076 191.8 9.8 108 192.1 9.6
013 191.5 10.0 045 191.5 9.9 077 192.0 9.7 109 191.6 10.3
014 192.0 9.6 046 192.4 9.7 078 192.1 10.0 110 192.2 9.8
015 191.9 9.7 047 192.1 9.7 079 191.6 9.8 111 192.0 9.9
016 191.7 9.9 048 191.5 9.8 080 192.6 9.9 112 191.9 9.7
017 192.1 9.7 049 192.2 9.6 081 192.0 9.9 113 191.8 9.7
018 192.2 9.7 050 191.9 9.8 082 191.9 10.0 114 192.3 9.9
019 191.4 9.9 051 191.9 9.4 083 192.0 10.1 115 191.7 10.3
020 191.8 9.7 052 192.0 9.5 084 191.8 9.8 116 192.5 9.6
021 191.9 9.4 053 192.0 9.9 085 192.3 10.0 117 192.0 9.6
022 192.2 10.1 054 192.1 10.1 086 191.9 9.5 118 192.1 9.5
023 192.1 9.8 055 191.9 9.9 087 192.0 9.6 119 192.1 9.8
024 191.6 9.6 056 191.9 10.4 088 192.2 9.9 120 192.1 9.8
025 192.0 9.9 057 192.5 9.9 089 192.0 9.8 121 191.8 9.7
026 191.9 9.5 058 191.9 9.7 090 191.9 9.9 122 192.1 9.5
027 192.3 9.5 059 192.0 10.0 091 192.2 9.7 123 191.7 9.9
028 192.2 9.9 060 191.7 9.7 092 191.9 9.8 124 192.0 9.9
029 192.0 9.8 061 191.8 9.8 093 192.5 9.7 125 192.1 9.8
030 192.3 9.9 062 191.5 10.0 094 192.3 9.5 126 192.1 9.9
031 191.4 9.8 063 191.5 9.4 095 192.0 10.0 127 192.5 9.8
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index µ σ index µ σ index µ σ index µ σ

128 191.8 10.0 160 192.2 9.9 192 191.7 9.6 224 191.5 9.9
129 191.8 9.8 161 191.6 10.2 193 192.2 10.0 225 192.5 10.1
130 191.7 9.7 162 191.4 9.7 194 192.1 10.0 226 191.5 9.6
131 191.7 10.2 163 191.7 10.0 195 192.1 10.0 227 191.9 10.0
132 192.0 9.8 164 191.6 9.9 196 191.9 10.0 228 192.0 9.9
133 191.5 10.0 165 191.8 9.7 197 191.8 9.6 229 191.4 9.8
134 191.6 9.7 166 191.9 9.5 198 192.4 10.0 230 191.8 9.6
135 192.1 9.8 167 192.1 10.4 199 192.1 9.9 231 192.0 9.8
136 191.8 9.9 168 191.9 10.1 200 192.4 9.9 232 192.2 9.5
137 191.9 9.8 169 191.9 9.9 201 191.6 9.8 233 192.4 10.1
138 191.9 10.0 170 191.8 9.8 202 191.9 10.2 234 191.8 9.9
139 191.6 10.0 171 191.9 9.9 203 192.2 9.7 235 191.7 9.7
140 192.1 10.0 172 191.7 10.1 204 191.9 9.8 236 192.0 9.8
141 191.9 10.0 173 191.8 9.9 205 192.1 9.7 237 191.6 9.5
142 192.2 9.4 174 191.7 9.8 206 191.5 10.0 238 191.9 9.7
143 192.4 9.6 175 192.1 9.9 207 192.1 9.7 239 191.9 9.7
144 191.6 10.2 176 192.2 9.6 208 191.9 10.0 240 192.1 10.0
145 191.8 10.0 177 192.0 9.7 209 191.8 10.0 241 192.0 10.3
146 191.8 9.7 178 191.4 9.7 210 192.0 9.6 242 191.9 9.6
147 191.9 9.6 179 192.5 9.9 211 192.0 9.6 243 191.9 9.8
148 191.7 10.2 180 191.9 10.0 212 191.6 9.6 244 192.1 9.6
149 191.7 9.7 181 192.3 9.8 213 192.1 9.9 245 191.9 9.9
150 192.2 10.2 182 192.0 9.6 214 191.6 9.5 246 192.7 9.9
151 192.0 9.7 183 191.6 10.1 215 191.7 10.0 247 191.8 9.2
152 192.1 9.9 184 191.8 10.0 216 191.8 9.8 248 192.1 9.9
153 191.8 9.5 185 191.5 10.0 217 192.0 10.1 249 191.3 10.0
154 192.3 10.0 186 191.7 9.8 218 191.9 9.9 250 191.8 9.5
155 191.5 9.4 187 192.4 9.7 219 192.1 9.5 251 192.2 9.9
156 191.9 9.4 188 192.1 9.7 220 191.9 9.5 252 191.7 9.6
157 191.8 10.1 189 192.0 9.9 221 191.6 9.9 253 191.9 10.0
158 192.0 9.7 190 191.6 9.8 222 191.9 9.6 254 191.8 9.4
159 191.7 9.8 191 191.4 9.8 223 191.5 9.8 255 191.5 10.0
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index µ σ index µ σ index µ σ index µ σ

256 191.4 9.7 288 191.5 9.4 320 192.1 10.0 352 191.9 9.9
257 191.7 10.1 289 192.0 9.9 321 192.0 9.7 353 191.9 10.1
258 191.8 9.7 290 191.8 9.9 322 191.9 9.9 354 191.8 9.8
259 191.7 9.6 291 192.1 9.9 323 192.2 9.8 355 191.9 9.5
260 191.9 10.1 292 192.0 9.8 324 191.2 9.4 356 192.2 10.2
261 192.0 9.8 293 191.7 9.8 325 192.0 9.7 357 191.5 9.9
262 192.2 9.3 294 192.3 9.5 326 191.9 9.7 358 192.5 10.0
263 191.8 9.8 295 191.8 9.6 327 192.2 9.9 359 191.4 10.2
264 191.8 9.9 296 192.0 9.6 328 191.6 9.8 360 192.4 10.1
265 192.5 9.6 297 192.4 9.8 329 191.5 9.8 361 191.9 9.4
266 191.7 9.4 298 192.2 9.8 330 191.9 10.3 362 191.8 9.6
267 192.3 10.0 299 192.3 9.9 331 191.4 9.9 363 192.1 9.7
268 191.7 10.0 300 191.8 9.7 332 191.3 9.7 364 192.0 9.7
269 191.6 9.7 301 191.6 10.1 333 191.6 9.7 365 191.9 9.9
270 192.0 9.6 302 191.8 10.1 334 192.1 10.2 366 192.4 9.9
271 192.5 10.0 303 192.1 9.4 335 192.0 10.0 367 191.6 9.5
272 191.7 9.5 304 191.8 9.7 336 191.6 10.1 368 191.7 10.1
273 191.6 9.7 305 192.2 9.7 337 192.0 9.7 369 192.1 10.0
274 191.4 9.7 306 191.7 9.6 338 191.9 9.7 370 191.6 9.2
275 191.4 9.9 307 192.2 9.5 339 191.8 10.0 371 191.1 10.2
276 191.4 9.9 308 191.8 9.6 340 191.8 9.7 372 191.4 9.7
277 192.0 10.4 309 191.8 9.4 341 191.8 10.0 373 191.8 9.8
278 191.6 10.0 310 191.4 9.4 342 192.3 9.3 374 192.2 9.6
279 192.3 9.7 311 191.8 9.9 343 192.2 9.6 375 192.3 9.5
280 191.8 9.5 312 191.5 9.6 344 191.9 9.8 376 191.9 9.6
281 192.0 9.4 313 192.4 9.9 345 192.6 10.2 377 191.8 10.0
282 191.9 9.7 314 192.3 9.6 346 192.0 9.9 378 191.8 10.0
283 192.4 9.8 315 192.5 9.4 347 191.7 9.9 379 191.8 9.8
284 192.2 9.9 316 192.0 9.6 348 191.9 9.4 380 192.2 9.6
285 192.1 9.7 317 191.6 9.9 349 191.7 9.5 381 191.8 9.2
286 191.3 9.9 318 191.9 9.9 350 192.1 10.0 382 192.0 9.5
287 192.4 9.9 319 192.0 9.8 351 191.9 9.7 383 192.2 10.1
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